450 lines
10 KiB
C#
450 lines
10 KiB
C#
|
|
using System;
|
|
#if UNITY
|
|
using UnityEngine;
|
|
using Math = UnityEngine.Mathf;
|
|
#endif
|
|
|
|
static public class Easings
|
|
{
|
|
/// <summary>
|
|
/// Constant Pi.
|
|
/// </summary>
|
|
private const float PI = (float)(float)Math.PI;
|
|
|
|
/// <summary>
|
|
/// Constant Pi / 2.
|
|
/// </summary>
|
|
private const float HALFPI =(float) (float)Math.PI / 2.0f;
|
|
|
|
/// <summary>
|
|
/// Easing Functions enumeration
|
|
/// </summary>
|
|
public enum Functions
|
|
{
|
|
Linear,
|
|
QuadraticEaseIn,
|
|
QuadraticEaseOut,
|
|
QuadraticEaseInOut,
|
|
CubicEaseIn,
|
|
CubicEaseOut,
|
|
CubicEaseInOut,
|
|
QuarticEaseIn,
|
|
QuarticEaseOut,
|
|
QuarticEaseInOut,
|
|
QuinticEaseIn,
|
|
QuinticEaseOut,
|
|
QuinticEaseInOut,
|
|
SineEaseIn,
|
|
SineEaseOut,
|
|
SineEaseInOut,
|
|
CircularEaseIn,
|
|
CircularEaseOut,
|
|
CircularEaseInOut,
|
|
ExponentialEaseIn,
|
|
ExponentialEaseOut,
|
|
ExponentialEaseInOut,
|
|
ElasticEaseIn,
|
|
ElasticEaseOut,
|
|
ElasticEaseInOut,
|
|
BackEaseIn,
|
|
BackEaseOut,
|
|
BackEaseInOut,
|
|
BounceEaseIn,
|
|
BounceEaseOut,
|
|
BounceEaseInOut
|
|
}
|
|
|
|
/// <summary>
|
|
/// Interpolate using the specified function.
|
|
/// </summary>
|
|
static public float Interpolate(float p, Functions function)
|
|
{
|
|
switch(function)
|
|
{
|
|
default:
|
|
case Functions.Linear: return Linear(p);
|
|
case Functions.QuadraticEaseOut: return QuadraticEaseOut(p);
|
|
case Functions.QuadraticEaseIn: return QuadraticEaseIn(p);
|
|
case Functions.QuadraticEaseInOut: return QuadraticEaseInOut(p);
|
|
case Functions.CubicEaseIn: return CubicEaseIn(p);
|
|
case Functions.CubicEaseOut: return CubicEaseOut(p);
|
|
case Functions.CubicEaseInOut: return CubicEaseInOut(p);
|
|
case Functions.QuarticEaseIn: return QuarticEaseIn(p);
|
|
case Functions.QuarticEaseOut: return QuarticEaseOut(p);
|
|
case Functions.QuarticEaseInOut: return QuarticEaseInOut(p);
|
|
case Functions.QuinticEaseIn: return QuinticEaseIn(p);
|
|
case Functions.QuinticEaseOut: return QuinticEaseOut(p);
|
|
case Functions.QuinticEaseInOut: return QuinticEaseInOut(p);
|
|
case Functions.SineEaseIn: return SineEaseIn(p);
|
|
case Functions.SineEaseOut: return SineEaseOut(p);
|
|
case Functions.SineEaseInOut: return SineEaseInOut(p);
|
|
case Functions.CircularEaseIn: return CircularEaseIn(p);
|
|
case Functions.CircularEaseOut: return CircularEaseOut(p);
|
|
case Functions.CircularEaseInOut: return CircularEaseInOut(p);
|
|
case Functions.ExponentialEaseIn: return ExponentialEaseIn(p);
|
|
case Functions.ExponentialEaseOut: return ExponentialEaseOut(p);
|
|
case Functions.ExponentialEaseInOut: return ExponentialEaseInOut(p);
|
|
case Functions.ElasticEaseIn: return ElasticEaseIn(p);
|
|
case Functions.ElasticEaseOut: return ElasticEaseOut(p);
|
|
case Functions.ElasticEaseInOut: return ElasticEaseInOut(p);
|
|
case Functions.BackEaseIn: return BackEaseIn(p);
|
|
case Functions.BackEaseOut: return BackEaseOut(p);
|
|
case Functions.BackEaseInOut: return BackEaseInOut(p);
|
|
case Functions.BounceEaseIn: return BounceEaseIn(p);
|
|
case Functions.BounceEaseOut: return BounceEaseOut(p);
|
|
case Functions.BounceEaseInOut: return BounceEaseInOut(p);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after the line y = x
|
|
/// </summary>
|
|
static public float Linear(float p)
|
|
{
|
|
return p;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after the parabola y = x^2
|
|
/// </summary>
|
|
static public float QuadraticEaseIn(float p)
|
|
{
|
|
return p * p;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after the parabola y = -x^2 + 2x
|
|
/// </summary>
|
|
static public float QuadraticEaseOut(float p)
|
|
{
|
|
return -(p * (p - 2));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after the piecewise quadratic
|
|
/// y = (1/2)((2x)^2) ; [0, 0.5)
|
|
/// y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1]
|
|
/// </summary>
|
|
static public float QuadraticEaseInOut(float p)
|
|
{
|
|
if(p < 0.5f)
|
|
{
|
|
return 2 * p * p;
|
|
}
|
|
else
|
|
{
|
|
return (-2 * p * p) + (4 * p) - 1;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after the cubic y = x^3
|
|
/// </summary>
|
|
static public float CubicEaseIn(float p)
|
|
{
|
|
return p * p * p;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after the cubic y = (x - 1)^3 + 1
|
|
/// </summary>
|
|
static public float CubicEaseOut(float p)
|
|
{
|
|
float f = (p - 1);
|
|
return f * f * f + 1;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after the piecewise cubic
|
|
/// y = (1/2)((2x)^3) ; [0, 0.5)
|
|
/// y = (1/2)((2x-2)^3 + 2) ; [0.5, 1]
|
|
/// </summary>
|
|
static public float CubicEaseInOut(float p)
|
|
{
|
|
if(p < 0.5f)
|
|
{
|
|
return 4 * p * p * p;
|
|
}
|
|
else
|
|
{
|
|
float f = ((2 * p) - 2);
|
|
return 0.5f * f * f * f + 1;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after the quartic x^4
|
|
/// </summary>
|
|
static public float QuarticEaseIn(float p)
|
|
{
|
|
return p * p * p * p;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after the quartic y = 1 - (x - 1)^4
|
|
/// </summary>
|
|
static public float QuarticEaseOut(float p)
|
|
{
|
|
float f = (p - 1);
|
|
return f * f * f * (1 - p) + 1;
|
|
}
|
|
|
|
/// <summary>
|
|
// Modeled after the piecewise quartic
|
|
// y = (1/2)((2x)^4) ; [0, 0.5)
|
|
// y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1]
|
|
/// </summary>
|
|
static public float QuarticEaseInOut(float p)
|
|
{
|
|
if(p < 0.5f)
|
|
{
|
|
return 8 * p * p * p * p;
|
|
}
|
|
else
|
|
{
|
|
float f = (p - 1);
|
|
return -8 * f * f * f * f + 1;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after the quintic y = x^5
|
|
/// </summary>
|
|
static public float QuinticEaseIn(float p)
|
|
{
|
|
return p * p * p * p * p;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after the quintic y = (x - 1)^5 + 1
|
|
/// </summary>
|
|
static public float QuinticEaseOut(float p)
|
|
{
|
|
float f = (p - 1);
|
|
return f * f * f * f * f + 1;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after the piecewise quintic
|
|
/// y = (1/2)((2x)^5) ; [0, 0.5)
|
|
/// y = (1/2)((2x-2)^5 + 2) ; [0.5, 1]
|
|
/// </summary>
|
|
static public float QuinticEaseInOut(float p)
|
|
{
|
|
if(p < 0.5f)
|
|
{
|
|
return 16 * p * p * p * p * p;
|
|
}
|
|
else
|
|
{
|
|
float f = ((2 * p) - 2);
|
|
return 0.5f * f * f * f * f * f + 1;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after quarter-cycle of sine wave
|
|
/// </summary>
|
|
static public float SineEaseIn(float p)
|
|
{
|
|
return (float)(float)Math.Sin((p - 1) * HALFPI) + 1;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after quarter-cycle of sine wave (different phase)
|
|
/// </summary>
|
|
static public float SineEaseOut(float p)
|
|
{
|
|
return (float)(float)Math.Sin(p * HALFPI);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after half sine wave
|
|
/// </summary>
|
|
static public float SineEaseInOut(float p)
|
|
{
|
|
return 0.5f * (1 - (float)(float)Math.Cos(p * PI));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after shifted quadrant IV of unit circle
|
|
/// </summary>
|
|
static public float CircularEaseIn(float p)
|
|
{
|
|
return 1 - (float)Math.Sqrt(1 - (p * p));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after shifted quadrant II of unit circle
|
|
/// </summary>
|
|
static public float CircularEaseOut(float p)
|
|
{
|
|
return (float)Math.Sqrt((2 - p) * p);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after the piecewise circular function
|
|
/// y = (1/2)(1 - (float)Math.Sqrt(1 - 4x^2)) ; [0, 0.5)
|
|
/// y = (1/2)((float)Math.Sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1]
|
|
/// </summary>
|
|
static public float CircularEaseInOut(float p)
|
|
{
|
|
if(p < 0.5f)
|
|
{
|
|
return 0.5f * (1 - (float)Math.Sqrt(1 - 4 * (p * p)));
|
|
}
|
|
else
|
|
{
|
|
return 0.5f * ((float)Math.Sqrt(-((2 * p) - 3) * ((2 * p) - 1)) + 1);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after the exponential function y = 2^(10(x - 1))
|
|
/// </summary>
|
|
static public float ExponentialEaseIn(float p)
|
|
{
|
|
return (p == 0.0f) ? p : (float)Math.Pow(2, 10 * (p - 1));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after the exponential function y = -2^(-10x) + 1
|
|
/// </summary>
|
|
static public float ExponentialEaseOut(float p)
|
|
{
|
|
return (p == 1.0f) ? p : 1 - (float)Math.Pow(2, -10 * p);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after the piecewise exponential
|
|
/// y = (1/2)2^(10(2x - 1)) ; [0,0.5)
|
|
/// y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1]
|
|
/// </summary>
|
|
static public float ExponentialEaseInOut(float p)
|
|
{
|
|
if(p == 0.0 || p == 1.0) return p;
|
|
|
|
if(p < 0.5f)
|
|
{
|
|
return 0.5f * (float)Math.Pow(2, (20 * p) - 10);
|
|
}
|
|
else
|
|
{
|
|
return -0.5f * (float)Math.Pow(2, (-20 * p) + 10) + 1;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after the damped sine wave y = sin(13pi/2*x)*(float)Math.Pow(2, 10 * (x - 1))
|
|
/// </summary>
|
|
static public float ElasticEaseIn(float p)
|
|
{
|
|
return (float)Math.Sin(13 * HALFPI * p) * (float)Math.Pow(2, 10 * (p - 1));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*(float)Math.Pow(2, -10x) + 1
|
|
/// </summary>
|
|
static public float ElasticEaseOut(float p)
|
|
{
|
|
return (float)Math.Sin(-13 * HALFPI * (p + 1)) * (float)Math.Pow(2, -10 * p) + 1;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after the piecewise exponentially-damped sine wave:
|
|
/// y = (1/2)*sin(13pi/2*(2*x))*(float)Math.Pow(2, 10 * ((2*x) - 1)) ; [0,0.5)
|
|
/// y = (1/2)*(sin(-13pi/2*((2x-1)+1))*(float)Math.Pow(2,-10(2*x-1)) + 2) ; [0.5, 1]
|
|
/// </summary>
|
|
static public float ElasticEaseInOut(float p)
|
|
{
|
|
if(p < 0.5f)
|
|
{
|
|
return 0.5f * (float)Math.Sin(13 * HALFPI * (2 * p)) * (float)Math.Pow(2, 10 * ((2 * p) - 1));
|
|
}
|
|
else
|
|
{
|
|
return 0.5f * ((float)Math.Sin(-13 * HALFPI * ((2 * p - 1) + 1)) * (float)Math.Pow(2, -10 * (2 * p - 1)) + 2);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after the overshooting cubic y = x^3-x*sin(x*pi)
|
|
/// </summary>
|
|
static public float BackEaseIn(float p)
|
|
{
|
|
return p * p * p - p * (float)Math.Sin(p * PI);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi))
|
|
/// </summary>
|
|
static public float BackEaseOut(float p)
|
|
{
|
|
float f = (1 - p);
|
|
return 1 - (f * f * f - f * (float)Math.Sin(f * PI));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modeled after the piecewise overshooting cubic function:
|
|
/// y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5)
|
|
/// y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1]
|
|
/// </summary>
|
|
static public float BackEaseInOut(float p)
|
|
{
|
|
if(p < 0.5f)
|
|
{
|
|
float f = 2 * p;
|
|
return 0.5f * (f * f * f - f * (float)Math.Sin(f * PI));
|
|
}
|
|
else
|
|
{
|
|
float f = (1 - (2*p - 1));
|
|
return 0.5f * (1 - (f * f * f - f * (float)Math.Sin(f * PI))) + 0.5f;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// </summary>
|
|
static public float BounceEaseIn(float p)
|
|
{
|
|
return 1 - BounceEaseOut(1 - p);
|
|
}
|
|
|
|
/// <summary>
|
|
/// </summary>
|
|
static public float BounceEaseOut(float p)
|
|
{
|
|
if(p < 4/11.0f)
|
|
{
|
|
return (121 * p * p)/16.0f;
|
|
}
|
|
else if(p < 8/11.0f)
|
|
{
|
|
return (363/40.0f * p * p) - (99/10.0f * p) + 17/5.0f;
|
|
}
|
|
else if(p < 9/10.0f)
|
|
{
|
|
return (4356/361.0f * p * p) - (35442/1805.0f * p) + 16061/1805.0f;
|
|
}
|
|
else
|
|
{
|
|
return (54/5.0f * p * p) - (513/25.0f * p) + 268/25.0f;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// </summary>
|
|
static public float BounceEaseInOut(float p)
|
|
{
|
|
if(p < 0.5f)
|
|
{
|
|
return 0.5f * BounceEaseIn(p*2);
|
|
}
|
|
else
|
|
{
|
|
return 0.5f * BounceEaseOut(p * 2 - 1) + 0.5f;
|
|
}
|
|
}
|
|
}
|
|
|